» Rätsel und Gewinnspiele für Firmen und Verlage » Interaktive Tests und Spiele für Ihre Website
Zuhören können, ist der halbe Erfolg.
 "
Calvin Coolidge
  Home Impressum Seite drucken 
Klassische Rätsel
Matherätsel
Physikrätsel
Reihenrätsel
Streichhölzer
Sprachrätsel
Scherzfragen
andere Rätsel
SMS-Rätsel
Worträtsel neu
Braingames
Braingymnastik
Juniorecke
Shop
Service
Partnerseiten
günstig kreuzworträtsel schwedenrätsel sudoku gewinnspiel tests spiele für verlage publikationen online print
amazon
 Rätsel: 284 
Aufgabe
Lösung
Die Aufgabe ist unlösbar.

Mit Hilfe der Graphentheorie kann man dieses Ergebnis beweisen:

Man kann zeigen, daß der Graph K(3,3), der aus sechs Ecken x1, x2, x3, y1, y2, y3 besteht, wobei jedes xi mit jedem yj durch genau eine Kante verbunden ist, nicht planar ist (d.h. nicht ohne Überkreuzung zeichenbar ist).

Angenommen, wir könnten diesen Graphen als planaren Graphen zeichnen. Dann hätte dieser n = 6 Ecken, m = 9 Kanten, und nach der Eulerschen Polyederformel könnten wir die Anzahl der Flächen ausrechnen:

2 = n - m + g = 6 - 9 + g,

also g = 5.

Weiterhin gilt, daß jede Fläche des Graphen eine gerade Anzahl von Ecken haben muß, denn Häuser und Versorgungswerke wechseln sich ab. Daher hat jedes Gebiet min­destens 4 Ecken und also auch mindestens 4 Kanten. Daher gilt 2m > 4g.

In unserem Fall bedeutet dies 18 = 2m > 4g = 20. Dieser Widerspruch zeigt, daß der Graph K(3,3) nicht planar ist.
 < 
<<
>>
 > 
 
dieses Rätsel hinzufügen
Was darf´s denn sein?
Rätsel mit
vom Typ  Mathe.
 Hölzer  Physik.
 Sprach.  Reihen.
 Scherz.  andere


© 2024 denksport.de Home | Impressum und Datenschutz | Dienstleistung | Seite drucken  zum Seitenanfang